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There are now many models of interest-rate markets available. Many are based on
the powerful HIM model of Heath, Jarrow and Morton (1992). Others, surveyed by
Rogers (1995), are not (explicitly) set within the HIM framework, but are driven by, say,
the short-term interest rate. In this paper we shall describe the appearance of a general
interest-rate market. We shall also show, under some additional technical restrictions,
that the general model is the short-rate model, and that the short-rate model is the HJM
model. In other words, every ‘sufficiently nice’ model is simultaneously an HJM model
and a short-rate model.

1. Introduction

We choose to work within the framework where all our processes are adapted to the
filtration of an n-dimensional Brownian motion.

We do this for three important reasons. Firstly, there are great technical simplifica-
tions, such as the continuity of all martingales, which allow stronger results. Secondly, the
Brownian case is recognizably distinct from other frameworks such as Poisson processes
and Markov chains, and worthy of consideration. And thirdly, much market practice and
interest is focused in this direction.

But, this framework assumption aside, we will try to be as general as possible.

Many approaches to interest-rate modelling can be divided into two types: short rate
(SR) models and forward rate (HJM) models. A market of discount bonds P(¢,T) can be
defined as

(SR) P(t,T) = [E(exp(—ftT Ty du) ‘ .7:,5),

for some adapted short-rate process ry,

(HIM) P(t,T) = exp(— [, f(t,u)du),

for some family of forward rate processes f(t,T).

In each case, the defining equation is augmented by some conditions or constraints on the
driving process(es). In SR, the process r; must be such that the integral fOT |rs|ds exists

and that the expectation of the reciprocal of the bank account process B; = exp( fot rsds)
is finite. In HJM, it is firstly assumed that the bonds are differentiable in T' to give the
forward rates f(¢,T), and further that f(¢,7) is a continuous semimartingale in ¢ whose
volatility and drift satisfy certain conditions.

It is immediate that a HJM model is also a SR model. This is because if we take the
short rate process r; to be f(t,t), then the SR-equation is just equation (19) of Heath,
Jarrow and Morton (1992).



It is not so obvious that any SR model is also a HIM model. The bond prices might
not even be T-differentiable, and the other HJM conditions are awkward to prove directly.
We shall address this question and show that:

Theorem. An SR model, satistying the regularity condition E fOT |ru| B! du < o0, is also
an HJM model.

These models are both prescriptive of the interest-rate market — its form is determined
by these definitions. It would be interesting to have a descriptive picture of the market,
which would tell us whether there are any other models we could use. We will answer this
too and show, in fact, that there are not. Before we can state the theorem, we need to say
what a general interest-rate market adapted to the Brownian filtration looks like.

We will take as axioms that there is a market of discount bonds P(¢,T) such that for
each maturity 7',

o P(t,T) is positive for all t < T
o P(T,T)=1
(BM)

e there is no arbitrage in the market

e P(t,T) is a continuous semimartingale in t.

We might call these the BM or bond market axioms, and it is immediate that all models
of either SR or HIM type satisfy them. We shall further justify the axioms momentarily,
but we can now state a theorem about such a market:

Theorem. A model satisfying BM will have a short rate process ry and, if the correspond-
ing bank account process By is tradable or hedgeable, it is also an SR model.

Some justification of the BM axioms is necessary to see that any useful model must
have these characteristics. The positivity of P(t,T') follows from the economic assumptions
of the bond holder’s limited liability, which keeps things non-negative, and of a utility func-
tion which is not completely indifferent to future rewards, which gives the strict positivity.
Also the bond cannot default, which implies that P(T,T) is exactly 1. The no-arbitrage
condition speaks for itself.

If there is no arbitrage, work by Delbaen and Schachermayer (1994) proves that if
a security is adapted (you can’t see into the future), is right-continuous with left-limits
(the right way round to avoid arbitrage profits from discontinuous shocks), and is locally
bounded (doesn’t explode) then firstly it is a semimartingale (their theorem 7.2) and
secondly there is a measure under which it is a local martingale (their corollary 1.2). The
security is then continuous, as are all Brownian local martingales. We can thus replace the
continuous semimartingale condition by the equivalent requirement that

o P(t,T) is locally bounded, adapted and right-continuous with left-limits.

Although there is a martingale measure for each bond individually, there is not yet
a proof that there is a measure under which simultaneously all bonds are martingales
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(though work in preparation by Lowther will go a good way towards this). Until then, we
shall assume that

e there is a measure which makes the (discounted) bond prices into martingales.

Ab initio, neither SR nor HJM models can claim to be truly general. The SR model
assumes the existence of a short-rate process ry, and the HIM model assumes the existence
of the forward rates f(¢,7). We shall show that these assumptions are warranted and that
any market of bonds satisfying BM, plus two regularity conditions, is both an SR model
and an HJM model. This includes the burden of showing that a short-rate process exists,
and that the bond prices are jointly measurable and T-differentiable.

In the next Section we will lay out our main theorems. To show that a model is
HJIM we need to prove the joint measurability of some families of processes parameterised
by maturity as well as a stochastic version of Fubini’s theorem. The existing stochastic
calculus literature does not seem to address our precise problem, and Section 3 contains
the technical details of how they may be solved. The subsequent Section then uses those
results to prove the original theorems.

Once we have understood the full generality of the interest-rate market it is possible
to explore its wilder shores. Section 5 contains two examples of pathological behaviour of
BM models. One is an example for which one of the regularity conditions fails, and the

model is neither SR nor fully HIM. The other is a model which is both SR and HJM, some

of whose bond prices have non-vanishing volatility as time approaches maturity.

2. Main results

As stated earlier, we shall show that any model adapted to a finite Brownian motion
filtration and satisfying some technical constraints is both an SR and an HJM model.
Our generality allows us to separate out properties of an interest-rate model which are
absolutely essential for the mathematics to operate, and those which are just desirable for
modelling or econometric purposes.

Notation note: to ease the proliferation of subscripts, it may be assumed that a
summation sign without limits is being summed over the range 1 to n. For example, we

will write Y, o; dW; for S°1_, o; dW;.

For ease of proof, we shall also assume that all the semimartingales involved have
absolutely continuous drifts.

We have three theorems.

Theorem 1. Let P(t,T) be a market of pure discount bonds under a measure P, with
the boundary condition that P(T,T) = 1 for every maturity date T. We assume that

(BM1) for each maturity date T the process P(t,T) is a positive-valued continuous semi-
martingale in t and is adapted to the filtration F; of n-dimensional Brownian motion.

(BM2) the market is ‘arbitrage-free’, in the sense that for any particular bond there is a
measure equivalent to P under which the bonds (discounted by the chosen bond) are
martingales.



Then

(i) for each maturity date T, there exist F-previsible processes ¥;(t,T) (1 = 1,...,n) and

a(t,T) such that [ (|S(t,T)[? + |a(t, T)|) dt < oo and

4, P(t,T) = P(t,T) (Z St T) dWi(t) + a(t, T) dt> .

1

(ii) fixing a maturity horizon date 7 and choosing the bond P(t,T) to be numeraire, there

(iii)

(iv)

is a measure PT equivalent to P and a F-previsible n-vector v;(t) (i = 1,...,n) such
that
dpP™ ' e 2
=exp (=Y [ w(s)dWi(s) =% [ |y(s)ds |,
dP Fi i 0 0

and WT(t) = Wi(t) + fot ~i(8)ds is PT-Brownian motion. Additionally, for every
maturity date T

d.P(t,T) = P(t,T) (Z Si(tT)dWT (1) + a(t,T) dt> 7
where a(t,T) = a(t,T)— >, vi(t)Z;(¢,T) is also a F-previsible process whose integral
fOT |&(t,T)| dt is finite. The 7-bond discounted bond price

P(t,T)
P(t, 1)

is a PT-martingale for every T.

there is a F-previsible process r; such that fOT |r¢| dt < oo and

d;P(t,T) = P(+,T) (Z (4, T)dWT () + (Z St T)Sa(t,7) + -rt> dt) .
Also the process By = exp(fot s ds) exists and is absolutely continuous.

there is a version of P(t,T) which is jointly measurable and t-continuous, and such
that

P(t,T) = P(t,7)Ep- (P~ (T, ) | Fu).
Further there are jointly measurable versions of ¥;(t,T) and a(t,T).

It should be noted that while the chosen numeraire 7 does provide a local time horizon

for the market, it need not be an ultimate limit. The market can extend beyond 7, even
up to infinity, but at or before 7 a new numeraire must be picked to allow further progress.

Theorem 2. Suppose that BM holds, then the market is a SR model if and only if the
additional regularity condition holds; that

(A1)

(i = exp (—Z/Ot Si(s, 7)dWT (s) — %/Ot 1S(s, 7)|? ds)
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is a uniformly integrable PT-martingale up to time 7 (that is that Ep-((;) = 1, or it is
sufficient that Ep- exp 3 [ |S(¢,7)|* dt < c0).

This condition is also equivalent to each of the following
(v) the 7-bond discounted value of the process By, P~ (t,7)B; is a PT-martingale.
(vi) there exists a measure Q equivalent to P and PT such that Wl(t) defined to be W] (t)+

fot Yi(s,7)ds is Q-Brownian motion and

d;P(t,T) = P(+,T) (Z (4, T) dWi(t) + e dt).

1

vii) there exists a measure Q equivalent to P such that the B-discounted bond prices

q b
B;'P(t,T) are Q-martingales and the bond prices themselves can be written as the ex-
pectation

P(t,T)=Egqg <exp<—ftT Ty du) ‘ .7:,5).

Theorem 3. Suppose that BM and (A1) all hold and further that
(A2) the expectation Eg( [, |ru|B, " du) is finite,
then the market is an HJM model, in that
(viii) the bond price P(t,T) is absolutely continuous in T with —%P(t,t) =ry, and

Q(rT exp(— ftT Ty du) | .7:,5).

5 E
log P(t,T) = f(t,T) := P(t,T)

T

(ix) the process f(t,T) is a semimartingale in t with SDE

dif(t,T) =Y oi(t. T)dWi(t) = Y oi(t. T)Si(t, T) dt,

where 0;(t,T) (i =1,...,n) is a F-previsible process in t with fOT lo(t, T)|* dt < .
(x) the bond volatilities ¥;(t,T) are absolutely continuous in T with ¥;(t,t) = 0 and

T
Si(t,T) = —/ oi(t,u) du.
t

Theorem 1 describes what we say about the basic BM model with no additional
regularity conditions. The conditions (BM1) and (BM2) are our formulation of the BM
axioms. Parts (i) and (ii) recall familiar material. There is a link between a market being
arbitrage-free and the existence of an equivalent measure, under which the discounted
securities are martingales. Quite what this link is in the case of an infinite number of
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tradable securities is an open question, but the finite case has been explored widely from
Harrison and Pliska (1981) to Delbaen and Schachermayer (1994). Here the market has
a risk-neutral 7-forward measure, under which bond prices (discounted by the numeraire
7-bond) are martingales.

The theorem continues by showing that bond drift is a function only of the volatilities
and a process (suggestively) labelled r;. If the model is SR then r; will be the short rate,
but we do not know this for sure yet. At this stage the putative bank account process (or
cash bond) By exists as a mathematical process, but may not be a tradable security. The
burden of result (iv) is less the formula for P(¢,7T) in terms of the 7-bond, than in the
statements of the joint measurability of P, ¥; and &. These (or equivalent) measurabilities
were assumed by HJM, but we have them as results.

Theorem 2 contains nothing new technically, but is included to make clear the role of
r¢ and the bond B;. Mathematically, Theorem 1 posits the existence of the bonds P(¢,T')
and doesn’t specify the existence or tradability of By. In fact we showed in part (iii) that
By did exist, but that didn’t prove it was tradable. By the equivalence of lack of arbitrage
and existence of a martingale measure, the bond B, can be traded only if it is a martingale
under the forward measure P7 (when discounted). As stated, the regularity condition (A1)
is actually equivalent to results (v), (vi), (vii) and the tradability of B, without arbitrage.
Although almost all models do assume this condition, it needn’t happen and a completely
general model need not satsify condition (Al). An example of a market where the cash
bond is not a P"-martingale is given in Section five. If the condition does hold, then the
bonds themselves can now be expressed as expectations of discount factors involving ry,
and the market is seen to be an SR model. The bonds discounted by the cash bond are
Q-martingales, but the new measure @ may depend on the 7 originally chosen if the market
is incomplete.

The main results of Theorem 3 are (viii) and (x) which prove that P(¢,T) and ¥;(¢,T)
respectively are absolutely continuous in 7'. In their paper, HIM assume the differentiabil-
ity of P(¢,T) and that the resulting forward rates are semimartingales. Here we show that
those assumptions are unnecessary. The condition (A2) makes the bond term-structure
differentiable (at almost all maturities) and ensures that the forward rate process is well-
behaved. It is this that actually lets us see the cash bond as the limit of holding very
short-dated bonds and makes it tradable. What we have by the end of item (x) is an HIM
model, as defined by Heath, Jarrow and Morton (1992). It should be noted that any model
of the bond market without continuous yield curves, differentiable at almost all maturities,
cannot be satisfying assumptions BM and (A1-2). We also note that it is sufficient that
the interest rate r; be bounded below by some constant, that is r; > —K for all ¢t < 7, for

condition (A2) to hold.
We can now address the first theorem we stated in Section 1.

Corollary 4. Suppose that r; is a previsible process adapted to the Brownian motion

filtered space (Q, F,P) such that [ |ri|dt is finite and that E [ |ry|By" du is also finite,
where By = exp(fot rsds). Then the market of bond prices P(t,T), defined by

P(t,T) = [E(exp(—ftT Tu du) .7:,5),
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is an arbitrage-free market satisfying the conditions BM and (A1-2) of the theorems and
results (1) to (x).

In other words, an SR model satisfying (A2) is an HIM model.

3. Preliminary results

To prove the three theorems, we do require some technical results on the measura-
bility and existence of some random processes, as well as a stochastic variant of Fubini’s
theorem. In all of what follows, we work with a one-dimensional Brownian motion Wy, its
filtration Fy, and its probability space (Q,F,P). The one-factor case is presented purely
for simplicity, and the obvious multi-factor versions of these results also hold.

Lemma 5. If (A, A) is a measurable space and X : A — LY (Q,F.), a — X,, is a
measurable function (giving L' the Borel o-algebra induced by its norm), then there is a
jointly measurable function F

F:AxQ—R,
such that F(a,w) is a version of X, for every a.

Proof of Lemma. We recall firstly that L'(Q, F,) is separable, because L*(2, F,) is both
separable itself (the filtration F, has a countable basis, such as {W, < ¢'}, ¢ € QN [0, 7],
¢ € Q) and is also a dense subspace of L'(Q, F,). Let (Y,) denote a dense sequence in
L', choosing a version Y,,(w) of each one.

Then for any positive €, we define the measurable index n. : L'(Q, F,;) — N by
ne(X) =inf{n : || X — Ya,|1 < €}.
This lets us define an approximation to F as

Fe(a7 w) = Yne(Xa)(w)7

which is certainly jointly measurable for every e. For any a, there is a version Fy(a,w) of
X,, which is w-measurable, but Fj is not necessarily a-measurable.

We can now use Markov’s inequality to see that the set
A(el = {w : |F6(a7w) - FO(a7w)| 2 \/E}

has size P(A%) < \/e. Moving along the fast subsequence ¢, = 272", we have that the set
A§ = limsup, . A? is P-null. For all w not in Af, F (a,w) tends to Fy(a,w). If we
define
Fla,w) = {hmn_,oo F. (a,w) if this 1‘imit exists,
0 otherwise.

Then F(a,w) is jointly measurable, and is a version of X, for every a. [l
Proposition 6. If X : [0,7] — L'Y(Q, F,), T — Xr, is a measurable function, then there
is a jointly measurable function

N :[0,7] x [0,7] x Q@ — R,
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such that N(t,T,w) is a t-continuous version of the martingale

N T)=E(Xr | F).

Proof of Proposition. The function
E:[0,7] x LY (Q,Fr) — LY (Q, Fr),
which takes (¢, X) to E(X|F;) is continuous. This is because
1B, X) — B(s, V)l < X = Yy + 1B, X) - B, ),

and the second term of the right-hand side tends to zero as s tends to ¢ for any X because
the process E(t, X) is uniformly integrable and (almost surely) continuous in #. Thus the
continuous function F is jointly measurable, and so too must be the function X,

X :[0,7] x [0,7] — LY(Q, F,),

which takes (#,T) to E(t, X7). The Lemma 5 now applies to give a jointly measurable
(but not necessarily t-continuous) function N(#,T,w) which is a version E(X7|Fy).

Following the notation of 11.61 of Rogers and Williams (1994), the set A defined to
be the set

{(w.T):¥e>0,36 >0, Yg.q' € QN[0,7]. ¢ —¢'| <6 = [N(¢.T.w) = N(¢', T,w)| < ¢}

is measurable and has sections AT = {w : (w0, T) € A} of size P(AT) = 1 for every T. If

we define ~
lim N(¢,T,w) if (w,T)€e A
N(t+. T — qllt q, 14, 9 9
T =15 if (0. T) ¢ A,
then this is a measurable #-continuous modification of N. ]

Lemma 7. Let H* = H°(Q, F,,P) be the space of F-previsible processes 1> up to time 7
such that fOT Y? dt is finite almost surely, and give H® the (metric) topology under which
Y, is defined to converge to 1 if

/ (z/)n(t) — 2/%)2 dt — 0 in probability.
0

Define the map ® : L'(Q, F,,P) — H°(Q, F,,P) which takes the random variable X to
the process ®,(X ) which is the Brownian motion representation of E(X|Fy), that is

E(X|F) =E(X)+ /t d,(X)dW,.

Then the map ® is continuous.



Proof of Lemma. Let M;X be the martingale E(X|F;). By Doob’s submartingale in-
equality, the maximum process M;X = SUPy< - | M;X| satisfies

P(M) > a) < @7

a

and thus M,X — 0 in probability as X tends to 0 in L'. Define F to be the moderate (and
bounded) function F(x) = x/(x + 1), so that the Burkholder-Davis-Gundy inequality (see
IV.42 of Rogers and Williams (1987)) holds:

EF([M¥)2) < CrEF(MY),

for some constant C'r. Now F (M;X ) tends to zero in probability and is bounded by 1,

so converges in L'. So F ([M X é ) converges in L' and hence in probability. As F is
continuous, we deduce that

[M*], = 0 in probability,

which is the desired result. ]

Proposition 8. Under the conditions of Proposition 6, there is a jointly measurable
function

¢:[0,7] x [0,7] x 2 = R
such that ¢(t,T,w) is a version of the F-previsible process ®,(Xr), and that

N(t,T) = N(0,T) + / t &(u, T)dW,.

Proof of Proposition. Let H°(Q, F,,P) be as in Lemma 7. Recall our dense sequence
Y, in L'(Q, F,,P) and let 1,(t,w) be a version of the process ®;(Y,). Then for every
positive e the function n, : [0, 7] — N, definied by

ne(T) =min{n : || X7 = Y,| < €}

is measurable. For each T, let ¢¢(t,T) be the F-previsible process ®,(X7), which will not
necessarily be T-measurable. Define our measurable approximation to ¢ as ¢., where

¢e(t7 T7 w) = 77Z)n€(T)(t7 w)'

For any T, the process ¢.(t,T) is just a version of ®¢(Y,_(x,)) which tends in the H°-
topology to ®,(X7) because ® is continuous (by Lemma 7). As in Lemma 5, along a fast
subsequence €,, there will be almost sure convergence and we can define ¢ to be the limit

o(t, T,w) = {gmn—wo Ge, (t,Tyw) if this limit exists,

otherwise.
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This completes the proof. [l

Proposition 9 (Stochastic Fubini). If X : [0,7] — LY(Q, F,), u — X,, is a measurable
function such that fOT | Xu|du is also in L'(Q,F,), then firstly conditional expectation
commutes with integration in that

E(fy Xudu| ) :/T E(X.|F,) du,

0

and secondly the map ® of Lemma 7 also commutes with integration:

c1>t<f07 X, d-u> - /T ®,(X,)du.

In other words, writing ¢(t,u) for a measurable version of ®,(X,), and Y for the integral

fOT X, du, then

E(Y|F) - E(Y) = /Ot (/0 qs(s,u)du) AW, = /0 (/Ot qs(s,u)dWS) du.

Proof of Proposition. Let us set f(u) to be E(|X,|). We know that [ f(u)du is finite,
so f(u) must be finite for almost all times u. We can set X, to be zero on the set of
‘bad’ u without loss of generality, and thus assume that f(u) is finite for all times u. By
Proposition 6, there is a jointly measurable function N(#,u), which is a version of the
martingale

Nt u) = E(X| ).
We want to show that

/TN(t,u)du =E(fy Xudu | 7).

The left-hand side above is F;-measurable and L!-integrable. For any event A in F;

E(Lfy N(t,u)du) = / E(IuN(t,u)) du = / E(I4X,) du.
0 0
The standard version of Fubini’s theorem allows us to rewrite this as
E(Iaf] X, du).
which proves the first part of the result.
For the second part, we can define the stopping times

0 =inf{t: [N(t,u)| = n} AT,

u

which are measurable in u. Then there is an approximation X" to X given by

Xy = NI} ),

u
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which is jointly measurable and bounded. Because X' is just X, stopped at time T, it
follows that

By the L?-version of the stochastic Fubini theorem in Tkeda and Watanabe (1981), we can

deduce that T T
0 0

In addition, for each u the random variable X tends to X, in L'(Q, F,) as n tends to
infinity, because || X} — X,|1 < 2E(|X.|;T) < 7). As this upper bound converges (to
zero) monotonically, we can also see that

/ngu—>/ Xy du in LY(Q,F,).
0 0

By Lemma 7, ® is continuous, so

CI></ ngu>—><I></ Xudu> in H(Q, F,).
0 0

Let U,(t) = CIDt(fOT Xdu) = fOT S X)) du = fA.n(t) ®,(X,)du, where A,(t) is the
set {u € [0,7] : t < TI'}. Because A,(t) tends upwards to the whole of the interval [0, 7],
as n tends to infinity, so ¥, (¢) converges to fOT ®,(X,) du. (We actually have dominated
convergence here as |, OT |®+(X )| du is finite, seen by considering the related system X which
has CIDt(Xu) = |®4(X,)| and automatic (monotone) convergence.) Hence fOT ®,(X,) du is
also equal to CIDt(fOT X, du). O

4. Proofs of the theorems

We can now use our preliminary results from Section three to prove the results stated
as theorems in the Section two.

Proof of Theorem 1. Result (i). Because P(¢,T) is a semimartingale, the drift «(¢,T)
exists by our assumption that the drift is absolutely continuous. The volatilities ¥;(¢,T')
exist by the Brownian martingale representation theorem. See, for instance, 1V.36.5 of

Rogers and Williams (1987).

Result (ii) is a re-statement of assumption (BM2). The change of measure comes from

the Cameron-Martin-Girsanov theorem. See IV.38.5(1) of Rogers and Williams (1987).

Result (iii). Using the SDE for P(¢,T) in part (ii) above, the SDE for Z(t,T) =
P(t,T)/P(t,7) is

4 Z(t,T) = Z(+,T) <Z(Ei(t7 T) = S(t, 7)) dWT () + (r(t,T) — r(t. 7)) dt),

1
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where r(t,T) is the F-previsible process a(t,T)—_ . ¥;(t, T)3;(t, 7), such that the integral
fOT |r(t, T)| dt is finite. For this to be a PT-local martingale for every T', the drift term must
be zero — in other words, every r(¢,T) must equal r(t,7). Supressing its dependence on
the fixed maturity 7, we shall call this common value ry. In other words, to be arbitrage
free the drift must have the form

atT)=> Si(t, T)Si(t,7) + 14,

7

from which the stated SDE follows. (The process r; will only be fully independent of 7 if
the market is complete, which property we are not concerned with here.)

Result (iv). The formula follows from the assumption (BM2) that the discounted bond
prices are PT-martingales. Joint measurability is harder, and follows from Proposition 6
applied to the function T +— P~Y(T,7). To show that this function is measurable it is
enough to remark that it is the monotone limit of the functions T + max{P~ (T, 1), K}
as K goes to infinity, which itself is continuous (and hence measurable) as a function from
[0,7] into L'(Q, F;). The Proposition then gives a jointly measurable and #-continuous
function N(¢,T,w) which is a version of

N(t,T) = Ep-(P~Y(T,7) | F2).

We then choose our version of P(¢,T) to be P(t,7)N(t,T). The measurability of ¥;(¢,T)
and a(t, T') follows from Proposition 8. ]

Proof of Theorem 2. Result (v). The process Z; = P~'(t,7)B; has SDE

dZ, = —7, Z Si(t, ) dWT (1),

1

so that Z; can be seen to just be a normalisation of (;. (In fact Z; = (;/P(0,7).) Thus is
(v) equivalent to (A1l).

Result (vi) follows from (A1) as an application of the converse of the Cameron-Martin-
Girsanov theorem for changing measure. For more details, see IV.38.5(ii) of Rogers and

Williams (1987). Condition (A1) follows from (vi) by the C-M-G theorem proper.

Result (vii). It is immediate that SR and (vii) are equivalent, so all that remains
is to link (vii) with (A1l). To prove that (A1) is sufficient for (vii), we consider (; to be
the Radon-Nikodym derivative up to time t of Q@ with respect to P7. Then for any X in
LY(Q, Fr,P7)

Ep-(X|F:) = GEQ(¢7 ' X|F).

In particular, for X equal to P~'(T,7), then

P(t,T) B
P(t,7)  P(t,7)

Eq(Br' | F1),
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which is the desired result (vii).

Conversely, if B! P(t,7) is a Q-martingale, for some @ equivalent to P, then we
can perform similar calculations to show that there is a forward measure P™ under which
P~'(t,7)B; is a martingale, and so result (v) holds which is equivalent to (A1). (We
might have to go back and pick a different forward measure at result (ii) if the market is
incomplete, but that doesn’t present any serious problems.) [l

Proof of Theorem 3. Result (viii). Our basic approach will be define the forward
rates via expectations and show that their integral is a bond price, rather than trying to
differentiate the bond prices directly.

By Proposition 6, there is a jointly measurable function F(¢,u) which, for each u, is
a t-continuous version of the martingale

F(t,u)=Eg(r B, " | 7).

By the first part of Proposition 9 (Stochastic Fubini), we can integrate this with respect
to u on the interval [0, T

T
/ F(t,u) du = [EQ(fOT -ruBljl du ft> =1- EQ(B;l | .7:t>.
0

P(t,T) = By (1 — /TF(t7-u)d-u> .

So that P(t,T) is absolutely continuous in 7" and

Thus

0
~ 57 P(1.T) = BF(t.T).

Clearly, F(t,t) = rB; "', so that —%P(t,t) is r4. The forward rate f(¢t,T) is just
B,F(t,T)/P(t,T). Writing Z(t,T) for B{ ' P(t,T), then f(t,T) = F(t,T)/Z(,T).

Result (ix). Obviously F(#,T) is a Q-martingale, so that f is a semimartingale. Let
A;i(t,T) be the volatility of F(t,T) with respect to W;, so that

dF(HT) =Y Ai(t,T)dWi(t),

(3

and  d,Z(t,T)=Z(t,T)> i(t,T)dWi(t).

By Proposition 8, we can choose a jointly measurable version of A;, which will allow us to
integrate it against T later. It can be deduced that

dif(t,T) =Y oi(t, T)dWi(t) = Y oi(t, T)S(t, T) dt,

13
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where o;(t,T) is the F-previsible process

oi(t,T)=Z ' (t,T)(Ni(+,T) — F(t,T)S,(t, T)).

Result (x). By the second part of Proposition 9 (Stochastic Fubini),

/OT F(t,u)du — /OT F(0,u)du = zZ: /Ot (/OT (s, ) du) dWi(s).

But by the proof of part (viii) the left-hand side above is Z(0,T)— Z(t,T), where Z(t,T) =
By 'P(t,T). This has SDE d;Z(t,T) = Z(t,T)Y, Si(t, T) dW;(t). Hence

Z(t,T)Si(t,T) = — / : Ai(t,u) du.

Now Z(t,T) is absolutely continuous with derivative —%Z(t, T)=F(t,T), so ¥;(t,T) is
absolutely continuous with derivative — %Ei(t, T)=Z"Yt, T)(A;(t,T)—F(t,T)Z;(¢,T)),
which is just (¢, T). ]

The condition (A2), that [EQ(fOT |ru|B; ! du) < oo, is required to enable application
of the stochastic Fubini theorem. In the Heath, Jarrow and Morton (1992) paper, they
use a condition (the last part of their C3) which is equivalent to requiring merely that the
integral fOT |ru| By ! du is finite. Tt is an open question as to whether this is enough, but it
is obvious that (A2) is more than sufficient, as there are some weaker pathwise conditions
which can be proved to be sufficient.

Additionally, our models may fail the strict meaning of the HJM paper in another
way. In particular, a model under Theorems 1-3 will not necessarily satisfy the second
inequality of the HIM condition C2 in Heath, Jarrow and Morton (1992), though it will
satisfy their inequality (7) which that condition is used to prove.

5. Two Examples
A market with a non-martingale cash bond

Pick a maturity 7, and let W, be a P-Brownian motion. (Here P will actually be the
forward measure P7 as well.) Then we shall choose for our P(t,7) to follow a Bessel(3)
process up to some time 79 < 7. Details of this Bessel process can be found in, for example,

VL3 of Revuz and Yor (1994). (How P(t,7) evolves after 7o will be immaterial.) Then
P(t,7) has SDE

diP(t,7) = P(t,7)(P~"(t,7)dW; + P2(t,7)dt), t < 7o.

This gives the volatility X(¢,7) = P~!(¢,7) and drift a(t,7) = P~%(¢,7). We can define
the rest of the market via result (iv) as

P(t,T) = P(t,7)E(P~ (T, 7) | F),

14



which is well-defined as P™(¢, 7) has finite expectation for all powers m > —3. This model
satisfies the BM conditions, and has the r; process equal to ry = 22(¢t,7) — a(t,7) = 0.
This is the nicest interest rate process we could hope for — it is non-negative, bounded
and deterministic. But the discounted bond By is not a martingale. As By = 1, the
process P~1(¢,7)B; is just the reciprocal of a Bessel(3) which by VI.33 of Rogers and
Williams (1987) is only a local martingale and not a full martingale. The condition (A1)
fails to hold.

Bond prices as Brownian bridges

We can show that even an SR/HJM-style model can have unusual properties. We will
need to recall the notation that the left-limit and right-limit of any function f at = can be
denoted by f(z—) and f(x+) respectively, or equivalently by lim,, f(y) and lim,|, f(y)
respectively.

Returning to the HIM model, for example, it is true that the volatility %(¢,7) is
absolutely continuous in T and

S(t,t+) =0,

that does not mean that the limit in the other direction
S(t—,1)

either exists or is zero. In other words, there is no mathematical reason (as opposed to
economic reasons) that a bond’s volatility should get smaller as it approaches maturity. If
the volatility stays away from zero, we might expect the bond price to follow some sort of
Brownian bridge path, but existing models tend to discount this possibility. The fact that
non-vanishing volatility is possible has not been well appreciated in the literature. Hull
and White (1993) remark that it would imply unbounded drifts, and don’t make it clear
that 3(7,T) = 0 is insufficient to avoid this. Cheng (1991) does show that an exponential
Brownian bridge cannot be a bond price in an arbitrage-free market, but in a setting which
places restrictions on the interest rate r;.

We can construct an arbitrage-free complete bond market in which some of the log
bond prices behave as Brownian bridges with constant volatility.

Our measure throughout will be the martingale measure Q. Let a be a positive
constant, and fix a date 7. The 7-bond will be made to be a ‘log-Brownian bridge’, that
is, P(t,7) = exp(Xy), where X; (0 < ¢t < 7) is a Brownian bridge from —a7 to 0. The
process X has SDE

Xy

dXt :O'th—

dt,

T—1

whose solution simultaneously satisfies the two integral equations:

t
X
Xi+ar =cW; — ds,
AW,
and Xt—I—CLT:CLt—I—O'(T—t)/ .
o T— 35

15



Setting r; to be the previsible interest-rate process

X

12 t

ry = 0" — t<T
tT 2 T—1 ’
rr =0,

our aim is to define a market via Corollary 4. We can re-express ry, for ¢t < 7, as

t

dW,

rt:%JQ—I—a—J/ W
0

T— S8

We can use this expression to calculate the variance of r;. The reason for doing that is
to be able to discover the asymptotic size of ry as t nears 7. In fact ||r||s ~ o(7 — t)_%,
which is t-integrable. Thus the first integral condition of Corollary 4 is satisfied. Then we
can integrate r between the limits of ¢+ and T to get

T T
Tt T —
/ rudu:%a2(T—t)——tXt—a/ Law,, t<T<r
13 13

T — T—u

Let Z be the normal random variable ftT T—u g, , which is the last term on the right-hand

T—U
side above (without the factor of o). This has variance

Var(Z):/tT (T_u>2du:(T—t)—|—(T—T) (E—I-QlogT_f).

T—U T—1 T —

In the case where t+ = 0, this variance is bounded by 7, and the mean of fOT rsds 1is
bounded by (30% + a)r. Hence ||Bt_1||2 is bounded, and so ||rtBt_1||1 < et — t)_%, which
is t-integrable. So the other integral condition of Corollary 4 is satisfied.

Let us define the bond prices P(¢,T) to be P(t,T) = E(exp — ftT ru du|F;) which gives

T—1t T—1t - T
P(t,T):exp{—tXt—l—%UQ(T—T)<——|—210gT t)}, t<T <,
7—_

T—1 T —

P(t,7) = exp(Xy), t<T.

We note that the price of the 7-bond is a log-Brownian bridge process. Extending the
r¢ process to the interval (7,27] by taking an independent copy of the distribution of the
process r on [0, 7], then

T— 2r =T
P(t,T) = exp {Xt—a(T—T)—I—%O'2(27'—T)< T + 2log T >},
T T
t<T<T<27T.
Taking the SDE of these bond price equations, we have that

dP(t,T) = P(t,T)(S(t,T)dWy + ry dt),
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where ¥ is the non-vanishing volatility function

%U t<T<r

o
0 t=17<T.

Indeed the ¥ tends to zero as maturity decreases, that is (7, 7+) = (7, 7) = 0, but not
as time increases, because S(7—,7) = 0.

The forward rates also exist with f(¢,7) = —% log P(t,T), which is

Xy T—1 T—T
t,T) = — 1o 4o | —— +1 t<T
f&T) T—t+20 T (7’—t—|_0g7'—t>7 <7
T
f(t,T):a—l—%a2—, t<7<T <27
T

Their SDEs are

Tt
dtf(t,T):_ithJrU?mdt, t<T <t

dif(t,T) =0, t<7<T<27.

This is an HJM-style model with

o
Tt
o(t,T) =0, t<7<T <27,

o(t,T)=— t<T<r

We can confirm that the equations of results (ix) and (x) hold.

We notice that the behaviour of the process ry, which is thought of as the short-term
interest rate, is rather erratic in this case. In particular, sup, . |r¢| is infinite almost
surely. We should remember that the bond prices and the cash bond however are quite
well-behaved, and we never did posit even the existence of r; initially.

In this case interest rates also go very negative with inf;«, ry = —oo. This need not
happen though. For instance, if we define X; to be a driftless bridge with non-vanishing

volatility, which has SDE
| X+
dXt = max {67 ﬁ th,
where € is a positive constant, then X, = 0 a.s. Then, with o, = max{e, |X,|/\/T — t},
P(t,7) = exp(Xy) and r; = 07, we can create an SR/HJM market in a similar way, but
with positive interest rates, though these too are unbounded.

We can even make some progress towards a general result linking non-vanishing volatil-
ities with unbounded interest rates.

17



Proposition 10. In an SR model (or equivalently, a general model satisfying BM and
(Al1)), for any maturity T satisfying P(0,T) < 1, it is impossible that both the volatility
be bounded below and the short rate be bounded above.

Proof of Proposition. (For simplicity, we take a one-factor model, but this makes no
difference, as each bond in isolation is equivalent to single-factor model.) For a fixed
maturity T, let o4 be the bond volatility (¢,T). Then rewriting result (vi) of Theorem 2,
under the martingale measure, we have that

dtP(t7 T) == JD(t7 T) <0't th + T¢ dt)

To try and derive a contradiction, let us suppose that o; > € for some positive ¢ and
|r¢| < K for some constant I, for all t < T. Then we set v; = ry/oy, which is absolutely
bounded as |v¢| < K/e. The Cameron-Martin-Girsanov theorem applies to give a measure
Q equivalent to P under which

t
Wi =W, + / ~vsds 1s Q-Brownian motion.
0

Thus d,P(t,T) = P(t,T)o; dW;, and so P(t,T) is a local @-martingale. As it is non-

negative it is also a Q-supermartingale in that
Eq(P(t,T) | F,) < P(s,T), s<t<T.

Evaluating this inequality at s = 0, t = T gives the contradiction 1 < P(0,T). [

Note. This does not mean that a shrinking ¥ and an unbounded |r;| are mutually exclusive.
It is possible that both can happen at once. For instance, a market based on a log-bond

price X;, with SDE

dX; = o(T —t)dW, — (Tj—fitt)a dt,

for any o > 2, has (¢, T) | 0 as ¢t T T, but limsup, || = co.

6. Conclusions

What we have done in our three principal theorems is to describe a model with as few
conditions as possible. In doing so, two things became apparent. Firstly, that (essentially)
all models adapted to a finite-dimensional Brownian motion are in fact short-rate/Heath-
Jarrow-Morton models, whether or not that was intended. This particularly underlines
the generality and rigorous approach of the Heath, Jarrow and Morton paper (1992), and
suggests that the model cannot be ignored by model makers, who de facto are working
within it. At a rarified level, all such interest-rate models are just restrictions of the general
HJM model and/or changes of its notation. At a practical level, however, a convenient
notation for a sub-model may reveal the wood which the HJM trees obscure.

What we have not been about here is creating new models. The BM framework
resembles the philosopher’s ladder that we climb up only in order to be able to throw
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it away. The BM model, the most general we could think of, turns out just to be both
the SR and the HJM models. This means not that we should phrase things in terms of
the BM model, but rather that it is pointless to look outside SR/HJM for new Brownian
based models. Model-makers should focus on restricting the SR/HJM model to sub-models
which suit their particular needs.

Secondly, we have seen that many of the ‘conditions’ of the HJM model can be taken as
proved theorems of the generalised model. In particular, the assumptions about the mea-
surability and integrability of the forward rate volatilities and drifts; the existence of the
interest rate process r; and the regularity of the cash bond By; and the T-differentiability
of the bond prices are not necessary conditions. Instead they follow from the arbitrage-
free nature of the market and the two integrability conditions (A1-2) in the preambles to
Theorems 2 and 3.

It is tempting and not entirely unjustified to deduce that, as the HJM model is no
better than the SR model, it is pointless to work within its notation rather than the simpler
framework of the short-rate. In the end, this is a question that others must decide, but one
should beware one thing. In the multi-factor setting that we have worked with throughout,
it is true that bond and option prices can be written in terms of the short rate. The price
at time t of a claim X maturing at time 7 is

Eg <exp<—ftT Ty ds)X ‘ .7:,5).

We must remember that although the discount factor is a function of the short-rate process,
the claim X might not be and the filtration F; almost certainly will not be. In the multi-
factor setting, it is necessary to keep track of all the factors, and the HJM notation is set
up to help with that, whereas the SR notation conceals it.

Further generalisations will come in weakening some of the conditions of the theorem.
Most notably, in a market comprising an infinite number of securities we need some version
of the results of Delbaen and Schachermayer (1994) giving the equivalence of a no-arbitrage
condition and the existence of a martingale measure (BM2). There is also the question of
completeness which we have not tried to address here.
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